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Problem Overview

Brief Statement:
How can we synthesize videos from random noise vectors without visual cues?

Why is the problem important?
® Understanding how videos are generated can help us in their decomposition of spatial
and temporal behavior.
® Can be used as the building block for choosing and designing priors for different
problems.
e Will help us in difficult problems like future frame prediction, feature learning for
videos, etc.
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Related Works

Prior works in this problem

® VGAN [1] demonstrates that a video can be divided into foreground and background
using deep neural networks.

® TGAN [2] proposes to use a generator to capture temporal dynamics by generating
correlated latent codes for each video frame and then using an image generator to
map each of this latent code to a single frame for the whole video.

® MoCoGAN [3] presents a simple approach to separate content and motion latent codes
of a video using adversarial learning.

® Video-VAE [4] extends the idea of image generation to video generation using Varia-
tional Auto-Encoder (VAE) by proposing a structured latent space in conjunction with
the VAE architecture for videos synthesis using a given/generated input frame.
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Related Works

Settings
Methods Adversarial Input Input latent
learning? frame? vectors?

VGAN [1] v X v/(random)
TGAN [2] v X v (random)
MoCoGAN [3] v X v'(random)
Video-VAE [4] X v v (random)
Ours X X v (learned)

Table 1: Categorization of prior works in video synthesis. Different from existing methods,
our model doesn’t require a discriminator, or any reference input frame. However, since we have
learned latent vectors, we have control of the kind of videos the model should generate.
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Proposed Approach: Motivation

Adversarial approaches [1-3] involve training a generative network using a discriminator.
These are great for learning complex data-distribution, but come with following drawbacks:

® They are difficult to train given the saddle-point based learning surface.
® They suffer from mode collapse problem.

® They suffer from vanishing gradient problem due to the adversarial process.

Also, inspired from - - -

Non-adversarial learning of generative networks for image generation [5, 6] have shown that
properties of GANs (convolutional networks) can be mimicked using simple reconstruction
losses while discarding the discriminator.
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Proposed Approach: Notation

Define a video clip V represented by L frames as V = L:)Vl’ Vo, - ,VL]. Corresponding to
each frame, let there be a point in latent space Zy € RP*L such that

2y =|a,2, 2] (1)

® We propose to disentangle a video into two parts: a static constituent, which captures
the constant portion of the video common for all frames, and a transient constituent
which represents the temporal dynamics between all the frames in the video.

® Assuming that the video is of short length, we can fix z,.(s) =z

sampling only once. Therefore, (1) can be expressed as
&7 146 ()
Z = 2
o= (o] o] o @
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Proposed Architecture
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Figure 1: Overview of Proposed Architecture. We map a video (with L frame sequence) into
two learnable latent spaces. We jointly learn the static latent space and the transient latent space
along with the network weights.
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Learning Loss |

Learning the weights of the network:

Let weights of G, and the RNN be v and 6, respectively. We jointly optimize for 6,~, and
{ZVJ.}J-’V:1 (sampled once in the beginning of training) for every epoch in two stages:

Stage 1: min ((V;,G(2v,)|(2v,.0)) (3.1)
gl
Stage 2 : ngig £V, G(2v,)) (3.2)
The index j represents a random video out of N videos chosen from the dataset. ¢(-) can

be chosen to be any distance based loss. We will refer to both (3.1) and (3.2) together as

min Arec.
2v,0,y
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Learning Loss Il

To equally capture the static portion of the video, we randomly choose a frame from the
video and ask the generator to compare its corresponding generated frame during training.
For this, we update the above loss as follows.

ZT,g,]’Y (‘grec + )\sgstatic) (4)
where lgatic = €(Vx, vi) with k€ [1,2,--- . L] is a randomly chosen index, v is the

ground truth frame, ¥, = G(zx), and X is the regularization constant.
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Triplet Condition

Learning the latent space:

t)n RORR X

2V . . .
| | | | | | | | |
o O 0o o |0 [0 O % ?
A A 2 2 2 2
Negative range Positive range _ Negative range

2

—

Figure 2: Triplet Condition in the transient latent space. Latent code representation of short
video clips may lie very near to each other in the transient subspace. Using the proposed triplet
condition, our model learns to explain the dynamics of similar looking frames and map them to

distinct latent vectors.
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Triplet Condition

Positive frames are randomly sampled within a margin range « of the anchor and negatives

are chosen outside of this margin range. Defining a triplet set with transient latent code

vectors {z(t) a,z,( )P , ,(t) }, we aim to learn the transient embedding space z(") such that

1297 = 225 + @ < 207 = 2073

1

v {297 2P 20" ¢ T where I is the set of all possible triplets in z(). With the above

? I

regularization, the loss in (4) can be written as

Zmierjy (Krec + )\sgstatic)
(t),a Zi(t),P”Z Ya< ||Z(t) a Zi(t)7n

st. |z

B (5)

where « is a hyperparameter that controls the margin while selecting positives and negative.
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Qualitative Results
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Figure 3: Qualitative results. The proposed method produces visually sharper, and consistently
better using the non-adversarial training protocol.
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Quantitative Results

‘ MCS | ‘ FCS 1 ‘ MCS | ‘ FCS 1

Bound 0.0 0.91 Bound 0.0 0.95

MoCoGAN [3] 411 0.85 MoCoGAN [3] 3.41 0.85

OUrS (_Ztriplet_gstatic) 383 077 OUrS (_Ztriplet_gstatic) 387 079

Ours (+€trip|et+éstatic) 332 089 Ours (+€trip|et+éstatic) 263 090
(a) Chair-CAD [7] (b) Weizmann Human Action [8]

Table 2: Quantitative results. We obtained better scores on the proposed method on both Chair-
CAD [7], and Weizmann Human Action [8] datasets, compared to the adversarial approaches
(MoCoGAN, and VGAN'). Best scores have been highlighted in bold.

Ihot shown here
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Application: Action exchange

Actions Identities
Pl\P2\P3\P4\P5\P6\P7\P8\P9
run ° ° °
walk ° ° °
jump ) . °
skip . ° °

Table 3: Generating videos by exchanging unseen actions by identities. Each cell in this table
indicates a video in the dataset. Only cells containing the symbol e indicate that the video was
part of the training set. We randomly generated videos corresponding to rest of the cells indicated
by symbols e, e, -, and e, visualized in Fig. 4.
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Application: Action exchange

Figure 4. Examples of action exchange to generate unseen videos. This figure demonstrates
the effectiveness of our method in disentangling static and transient portion of a video, as well as
the efficacy in generating videos unseen during training. The colored bounding boxes indicate the

unseen video generated referred in Tab. 3.
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Conclusions

® We presented a non-adversarial approach for synthesizing videos by jointly optimizing
both network weights and input latent space.

® Qur approach allows us to generate videos from any mode of data distribution, perform
frame interpolation?, and generate videos unseen during training.

e Experiments on three? standard datasets show the efficacy of our proposed approach
over state-of-the-methods.
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Thank you!
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