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Introduction
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Problem Scenario

Example Scenario: Suppose we want
to estimate which booth does a partic-
ular person visits the most in a business

conference.
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Problem Scenario

Example Scenario: Suppose we want
to estimate which booth does a partic-
ular person visits the most in a business
conference.

What tools do we need?
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Problem Scenario

Example Scenario: Suppose we want
to estimate which booth does a partic-
ular person visits the most in a business
conference.
What tools do we need?

» Camera system

» Tracking system

» Person Re-ldentification system
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Our Objective:
Person Re-ldentification
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What is Person Re-ldentification?
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Challenges
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What Are Our Challenges?

person
identity label
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What Are Our Challenges?
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What Are Our Challenges?
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What Are Our Challenges?
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What Are Our Challenges?

Occlusion, misalignment, and similar appearance between different identities are
inherent issue.

Misalignment Occlusion

Similar appearance
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Proposed
Formulation
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Design Motivation
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M.1 Current methods do not explicitly address re-ID challenges in both Temporal and

Spatial dimension.
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Design Motivation

M.2 Multi-granularity!! /patch division[?] helps in localizing individual specific features.
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[1] Yichao Yan et al. “Learning Multi-Granular Hypergraphs for Video-based Person Re-Identification”. CVPR. 2020.
[2] Yifan Sun et al. “Beyond Part Models: Person Retrieval with Refined Part Pooling (and A Strong Convolutional Baseline)”. ECCV. 2018.
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Spatio-Temporal Representation Factorization (STRF)

) reweighted

> feature maps
fe output feature
D) map

‘%\\\\ ) \\ a
s) ( )

- R i | e e
RIS Ly S g o (P2
D fine FFM (8, 7) AN . —>| reshape /) integration
input feature ‘7/4/00 : . - _ (5) operation

map e - Bt TR > e —7
FFM (s, 5) [ R Y

Feature Factorization
Module, FFM(d, k)

factorizing

Factorized Attention
channel reduction  function Mag

a(t'::g:)" Mask (FAM)

13/22



[T RIVERSIDE | UNITED | {, Urited maging

¢ « « Intelligence

Concept of Temporal Branch

» To handle similar appearance and possibly occlusion.

u > time N > time
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Concept of Spatial Branch

> Majority pixels of a given frame belong to the person.

» Sampling in spatial domain (H x W) should thus alleviate occlusions and mis-
alignment which only occur in few frame.
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Overall Concept for Complete Model
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How to use STRF units?

(A) 3D-CNN based Model Training

composed of Residual Blocks

video tracklet

(B) Proposed Example blocks

L triplet

Global Average
Pooling

conv — bn — relu

Residual Block
(Inflated C2D)

(a) STRF-P3D-B (b) STRF-P3D-A (c) STRF-P3D-C
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Improvements over Baselines

[T RIVERSIDE | , uNiTeD

United Imaging
Intelligence

Table 1: STRF consistently improves the performance of baseline models. P(M) is model size

in millions.

DATASETS
MODEL | P(M) MARSET DukeMTMCI™

mAP (%) | RO1 (%) || mAP (%) | R@1 (%)

13D 28.92 82.70 88.50 95.20 95.40
+ STRF | 28.97 83.10 88.70 95.20 95.90
P3DA 25.48 83.20 88.90 95.00 95.00
+ STRF | 25.53 | 85.40 89.80 95.60 96.00
P3DB 25.48 83.00 88.80 95.40 95.30
+ STRF | 25.53 | 85.60 90.30 96.40 97.40
P3DC 25.48 83.10 88.50 95.30 95.30
+ STRF | 25.53 86.10 90.30 96.20 97.20

[3] Liang Zheng et al. “MARS: A Video Benchmark for Large-Scale Person Re-ldentification”. ECCV. 2016.
[4] Yu Wu et al. “Exploit the Unknown Gradually: One-Shot Video-based Person Re-ldentification by Stepwise Learning”. CVPR. 2018.
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Table 2: STRF gives state-of-the-art performance on all datasets (best results in red, second

best in blue, and third best results in green.)

DATASETS
METHODS VENUE MARSF DukeMTMCH iLiDS-VID™
mAP (%) | R@1 (%) || mAP (%) | Re1 (%) Re1 (%)
MGH CVPR 2020 85.80 90.00 - - 85.60
STGCN CVPR 2020 83.70 89.95 95.70 97.29 -
MG-RAFA CVPR 2020 85.90 88.80 - - 88.60
TACAN WACV 2020 84.00 89.10 95.40 96.20 88.90
M3D TPAMI 2020 79.46 88.63 93.67 95.49 86.67
AFA ECCV 2020 82.90 90.20 95.40 97.20 88.50
AP3D ECCV 2020 85.60 90.70 96.10 97.20 88.70
TCLNet ECCV 2020 85.10 89.80 96.20 96.90 86.60
STRF Ours 86.10 90.30 96.40 97.40 89.30

[3] Liang Zheng et al. “MARS: A Video Benchmark for Large-Scale Person Re-ldentification”. ECCV. 2016.
[4] Yu Wu et al. “Exploit the Unknown Gradually: One-Shot Video-based Person Re-ldentification by Stepwise Learning”. CVPR. 2018.

[5] Taiging Wang et al. “Person Re-ldentification by Video Ranking”. ECCV. 2014.
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Performance w.r.t. other 3D-CNN based works
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Figure 1: STRF gives state-of-the-art performance w.r.t. other 3D-CNN based methods with
fewer model parameters.
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Attention Map Visualization
video tracklet Baseline Baseline + STRF
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Thank You!

» Paper ID: 1629 — Spatio-Temporal Representation Factorization for Video-based
Person Re-ldentification

» Paper Session:

e Session 1A — October 12, 10:00 AM - 11:00 AM (EDT)
e Session 1B — October 14, 05:00 PM — 06:00 PM (EDT)

> Paper available at: https://arxiv.org/pdf/2107.11878.pdf



