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Abstract

We present a theoretical support of State Space Models, in particular focusing on
Linear State Spae Layers, introduced in the paper ‘Combining Recurrent, Convo-
lutional, and Continuous-time Models with Linear State-Space Layers’ [1]. This
report disentangles the underlying concept of the objective function of these mod-
els to provide a comprehensive overview. Suggestions/corrections are welcome.

1 Introduction

State space models (SSMs) [1] have been proposed as a possible alternative to (now) ubiquitous
transformers. SSMs extended the idea proposed in [2] that capturing long range dependencies
is equivalent to optimally storing and incorporating information from previous inputs in memory.
Transformers' were known to have difficulty scaling to long sequence lengths, primarily due to the
quadratic complexity of their self-attention mechanism [3]. Hence, authors of [2] proposed to treat
memory as a problem of online function approximation where a function (representing past memory)
f(t) : RT — R is summarized by storing its optimal coefficients in terms of some basis functions.
Following on [2] idea, [1] proposed Linear State Space Layers (LSSLs) for sequence modeling
based on classical standard state space representations. Readers are recommended to go through this
extremely well summarized video [4].

This report is dedicated to deciphering the minute details of LSSLs starting from the classical state
space representations as the basics. Please do not hesitate to contact the author in case you find an
error in the analysis.

2 The Classical (Continuous) '"State Space Model"

In practice when we analyze any system, we start by developing a mathematical description of the
system in the form of differential equations [5]. This is because differential equations provide a
powerful and flexible framework for modeling, analyzing, and predicting the behavior of such systems.

A “‘state space" representation of a system is the mathematical model where the inputs, outputs and
the system’s internal components (that mathematically describe the system, also called as “states") [6]
are related via first-order differential equations. Although there are other mathematical models [6, 7]
for establishing the relationship between the aforementioned trio (e.g. using transfer functions), state
space models leverage first-order differential equations for their conciseness (isolate each components
or states and provide a representation) as well as the ease of efficient analysis (e.g. using linear algebra
techniques for better system explainability). State-space models are one such method to convert a
n-th order differential equation to first-order matrix differential equation [5] for their aforementioned
useful properties.

Let’s discuss the origins of the state space representation of a system. Denote an input and output
(both function of time t) with w(t) and y(¢), respectively. Consider a n-th order system described by
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a n-th order differential equation [6]

dry(t dnly(t dy(t
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Here, a;Vi and b, represent the corresponding scalar coefficients. To understand how state-space
models convert Eq. 1 into a batch of first-order differential equations, lets look at an example of a
system defined by third-order differential equations (i.e. putting n = 3 in Eq. 1). We will drop the
time function representation of all variables for simplicity.
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To convert this third-order differential equation to a set of first-order differential equations, we
introduce the following three variables (all functions of time ¢) as follows.

dy d?y
hi=vy,hy = — h3=— 3
1=y hy=—0 hs =25 3)
For h, and h3, we can also observe that
dh1 dhg . dhg dgy
hy = —— hs = —= 1 th, — = —
2T g T g POV T T s
Using above in Eq. 2, we get
dh
7; + azhsz + aihs + aghy = byu 4

We summarize the obtained first-order differential equations in Eq. 3, needed to describe Eq. 1, as
follows.

dd—h: Zhg,% Zhg,% = —(aghs + aths + aghy) + bou 4)
Writing the above equations together gives us the following matrix form.
dhy 0 1 07T[m] O
dhal =10 0 1 hol + (0| w (6)
dhs —ag —a1 —az| |hs] bo
it 0o 1 0 0]
Setting h = % VA= 0 0 1 |, B = | 0|, we get the state equations. After
% —ap —ai; —as bo |

computing the solution to this state equation, we can set C = [1 0 0] and arrive at the output
equation.

hy
y=1[1 0 0] |h2 @)
hs
Hence, the final SSM representation is given as
h = Ah + Bu (8a)
y=Ch (8b)

In general, for n-th order differential equation can be represented by (D turned out to be zero for
above example, but it’s usually not the case)

h(t) = Ah(t) + Bu(t)
y(t) = Ch(t) + Du(t)
In control system literature [7], A is the state matrix, B is the input matrix, C' is the output matrix,
and D is the feedthrough matrix. Further, we need to compute the solution of the state equation for
using the output equation. We visualize the total representation in Fig. 1. Next, let’s relate these

fundamental SSM equations Eq. 9 to Linear State-Space Layers (LSSLs) introduced in [1]. For this,
we will need to convert Eq. 9 to its discrete form.
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Figure 1: Classical SSMs

3 The Classical (Discrete) ''State Space Model"

We aim to understand how [1] used SSMs (Eq. 9) as a black-box representation in a deep sequence
model, where A, B, C, and D are parameters learned by gradient descent. Similar to [8], we will
assume D =0, interpreting it as an easily computable skip connection (can also be observed in Fig. 1).

To do this, we first convert the continuous-time equation group into discrete-time LSSLs (so that
we can process discrete inputs such as image pixels). Essentially, we are estimating y(¢) from w(t)
using the system hidden state h(t). In particular, we leverage Generalized Bilinear Transform (GBT)
[9]. GBT of Eq. 9 help us apply SSMs to operate on discrete input sequence (g, ¥1, - - - ) instead
of continuous function u(t). The inputs uj can be viewed as sampling the continuous signal w(t).
We assume that the input w(t) is constant over the time interval A (also known as Zero-Order Hold
assumption [10]), which is represented as follows.

up =u(kA) =wulk] vV kEA<t<(k+1)A (10)
Step size A represents the gap between time points (i.e. time-period or time-period-scale or time-
scale [1]) from where wuy, is sampled from w(¢). This means that the length of dependencies (within
the input sequence)that a (discrete) SSM can capture, is dependent on this value. This makes A an

important factor in deep sequence modeling. So, lets first derive the discrete versions of Eq. 9 before
computing the discrete versions of A, B, and C (using GBT).

There are two ways [10] to convert Eq. 9 to discrete form. One is an Approximate discretisation
(which uses the Euler’s approximation) and the other one, which we will focus on, is the Exact
discretisation. The exact discretisation requires us first to calculate the solution to Eq. 9, in particular,
solving for h(t) = Ah(t)+ Bu(t). For clarity, we will replace the variable ¢ with 7 while computing
the solution of this state equation (as ¢ will appear again later).

It is know that for a scalar equation (where h(7) € R and a is some constant), k(1) = ah(7) has a
solution of the form h(7) = eA™h(0). Thus, in our case, where A is a matrix, we can start with the
assumption that the solution is of the form h(7) = eA7h(7) [10]. With this, let’s multiply e =47 on

both sides of h(7) = Ah(7) + Bu(r) giving us the following.

e "h(r) = e~ A7 (Ah(1) + Bu(r)) (11)
— e A"h(7) — e AT Ah(7) = e 47 Bu(r) (12)
— AT .
Noting that w = e ATh(r) — e~ AT Ah(T), we get
d(e=4"h
‘ dT*(T)) = ¢ " Bu(7) (13)
Integrating both sides of Eq. 13 between 0 to ¢ gives us
T=t T=t
e ATh(t)| = / e AT Bu(r)dr (14)
7=0 7=0
T=t
— e h(t) — *AR(0) = / e~ A" Bu(r)dr (15)
7=0

Multiplying e* to both sides of Eq. 15 and noting e® = I (identity matrix), we get the solution of
the state equation in Eq. 9 as follows

h(t) = e*h(0) + /

7=0

T=

t
A=) Bu(r)dr (16)



Inserting this solution Eq. 16 in the output equation of Eq. 9, we get the output prediction as follows.

T=t

y(t) = C(eAth(O) +/T

Now that we have computed the solution in Eq. 16, we can now derive the discrete versions of
Eq. 9. With discrete input defined as Eq. 10, we evaluate the state equation at the sampling instant
t = (k+ 1)A as follows [10].

eA<”>Bu(T)dr> + Duf(t) (17)
=0

T=(k+1)A

h((k+1)A) = eA*TDAR(0) + / eAURHDA=T) Buy(7)dr (18)
=0

T=(k+1)A

eA((k+1)A_T)Bu(T)dT) 19)

=0

= h((k+1)A) = A2 <eA’fAh(0)> + (/T

T

Let’s focus on the term Z. We can break this term in two intervals as follows.

T=kA T=(k+1)A
I:/ SA((k+1)A7T)BU<T)dT+/ 6A((k+1)A7T)Bu(T)dT (20)
=0 T=kA

.1 Z.2

Taking eA# outside the integral in Z.1, and noting that u(7) = w(kA) in the interval kA < 7 <
(k+ 1)A for Z.2, we get

r=kA r=(k+1)A
I= eAA( / eA(kA_T)Bu(T)dT> + ( / eA((kH)A_T)BdT)u(kA) (21)
=0 T=kA

Putting Eq. 21 back in Eq. 19, we get

h((k+1)A) =24 (#’“%(0)) + AR (/T

T=(k+1)A
+ ( / eA<<k+1>A—T>BdT>u(kA) (22)
T=kA

T=kA
eA(kA_T)Bu(T)dT>
=0

T=kA
= h((k+1)A) =22 (eAkAh(O) —|—/ eA(kA_T)Bu(T)dT)
7=0

L 1
n

T=(k+1)A
+ ( / 6A<(k+1)A_T)BdT) w(kA)  (23)
T=kA

T

The term 7Z is clearly equivalent to h(kA) if we set t = kA in Eq. 16. The term ZZZ can be further
simplified by setting € = (k + 1)A — 7. This also means d7 = —de.

e=A

e=0
I = / eI B(—de) = / eA°Bde (24)
e=A e=0

If we further simplify 7ZZ to remove the integral, we can use the following steps [11]. Assuming A is
invertible, we can write A~1 A = I where I is the identity matrix. Then, the term ZZZ can be written
as follows.

e=A
T =A"" < / AeAEde> B (25)

=0

With 229 — geAe,

T — A (/FA d(eAe)de>B — AT (A|TYB=A" (A —T)B  (26)
a e=0  de ; =0/



Putting 77 and 7ZIZ back in Eq. 22, we obtain the discretized state space equation.
R((k+1)4) = (42 )h(kA) + (A7 (A2 — 1) B u(kA) @7

Similar to computing the solution (Eq. 16) of continuous-time state equation in Eq. 9, we now
compute the solution of Eq. 27 using the Iterative Method. Let A = e4%, B = A~! (eAA I )B.
Start by setting k = 0 and k = 1 (drop A in the notation for brevity).

h(1) = Ah(0) + Bu(0) (28)
h(2) = Ah(1) + Bu(l) (29)
Let’s use Eq. 28 in Eq. 29.
h(2) = A(Ah(0) + Bu(0)) + Bu(1)
= A’h(0) + ABu(0) + Bu(1) (30)

We can keep performing the same steps for £ = 3, which leads to the following.
h(3) = A°h(0) + A Bu(0) + ABu(1) + Bu(2) 31)

Clearly, we can generalize this form to the following [10].

k—1
h(k)=A"R(0)+ Y A"V Bu(n) (32)

n=0

This state solution now can be used with the discretized output equation. To obtain the output
equation, we set t = kA in Eq. 17 and noting the occurrence of the term 77Z.

T=kA
y(kA) =C (eAkAh(O) + / eA(kAT)B’u,(T)dT> +Du(kA) (33)
7=0

73
= y(kA) = Ch(kA) + Du(kA) (34)

To summarize, we have the following discrete SSM of Eq. 9.

hii1 = th + Euk

_ _ (35)
yr = Chy + Duy,

where,
A=e% B=A'A*-I)B, C=C, D=D (36)

This discrete SSM in Eq. 35 is exactly the same as Eq. (4) in Mamba [12]. With the parameter
transformation from (A, A, B) to (A, B), the LSSL based sequence model can be represented in
following two ways: either as a linear recurrence or as a global convolution.

4 State Space Sequence Models

Now, that we have arrived at the discrete form of SSMs in Eq. 35 that can handle discrete input
sequences ug, lets formalize the notations and nomenclature before we discuss SSM’s application for
deep sequence modeling, following [1].

Given a fixed state space representations A, B, C, D, an LSSL is the sequence-to-sequence mapping
defined by discretizing the linear state-space model Eq. 9 (which we derived in Eq. 35). Eq. 35 can
be directly interpreted as a Recurrent Neural Network (RNN) representation. In particular, Eq. 35
maps the sequence uy, to Yy using the hidden state in hy. However to process the (new) sequence
ug+1, we need to recompute this hidden state hj_1 recursively using the transition matrix A. Hence,
we will leverage the convolutional representation.



4.1 The Convolutional Representation
Let’s go back to the solution of the discrete state equation in Eq. 32.

In Eq. 32, assume h(0) = 0 and write w[k — 1 —n] = A" B as follows.

k—1
hlk] = Z wlk — 1 — njuln] 37)

We can note that Eq. 37 represents the discrete convolution operation between the interval 0 < n <
k — 1. Insert Eq. 37 in output equation of Eq. 35 to get

k—1

ylk] = C(Z wlk—1- n]u[n}) + Dulk]
= K x u[k] + Dulk] (38)

With K, the convolution operation can be computed comparatively efficiently than the RNN form [1].

5 Conclusion

We provided an overview of Linear State Space Layers (LSSLs), which are the core components of
State Space Models (SSMs). We traced their development from classical continuous-time models to
discrete-time formulations, demonstrating their application in deep sequence modeling based on solid
mathematical principles. Finally, we discussed their efficient convolutional representation, which
makes LSSLs well-suited for modern deep sequence modeling.
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